
ALGORITHMS, PROGRAMMING,

FLOWCHARTS AND FLOWGORITHM

R. Robert Gajewski

Warsaw University of Technology, Faculty of Civil Engineering

rg@il.pw.edu.pl

Abstract. The paper tries to answer the question – can the basics of algorithms

and programming at faculties other than computer science (informatics) be taught

more effectively using spreadsheets, computer algebra systems and e-Learning

tools and materials like e-Books, software animations and specialized flowchart

software. The first part of the paper gives a critical review of the literature of the

subject. In the second part of the paper the programme of an applied computer

science course devoted to algorithms programming is presented. The third part

shows results of two surveys.

Keywords: computational thinking, software animations, flowcharts.

INTRODUCTION

How to teach algorithms and programming as part of computational thinking

(Wing, 2006) is still an open question (Wolfram, 2016). Sleeman (Sleeman,

1986) described programming as the new Latin of the school syllabus. Even there

are developments in ITC programming is still causing problems (Gomes &

Mendes, 2007) perhaps because of the fact that it includes knowledge of

appropriate tools and languages, problem-solving skills and strategies for program

design and implementation.

1. LITERATURE REVIEW

One of the first articles on experimental investigations of the utility of detailed

flowcharts in programming was written in 1977 (Shneiderman, Mayer,

McKay, & Heller , 1977). Later there were theses prepared on design and

implementation of a tool for teaching programming (Goktepe, 1988) and about

visual programming (Nickerson, 1994). There is also a whole book written on

software visualization (Diehl , 2002). Baldwin and Kuljis presented in Balwdin &

Kuljis (2001) the way of learning programming using program visualization

R. Robert Gajewski394

techniques. Books written by Gaddis (Gaddis, 2015) and Venit (Venit & Drake,

2014) give an excellent framework for programming course on any level. A review

and discussion of problems in learning and teaching programming is created by

Robins (Robins, Rountree, & Rountree, 2003).

1.1 Choice of the flowchart tool

There are many flowchart-based programming environments for improving

comprehension and problem-solving skills of novice programmers (Hooshyar ,

Ahmad, Nasir , Shamshirband, & Horng, 2015). Three of them were tested

during the last few years:

 LARP - Logic of Algorithms for Resolution of Problems created by Marco

Lavoie (the last version is from 2008)

 RAPTOR – Rapid Algorithmic Prototyping Tool for Ordered Reasoning

created by Martin Carlisle and described in many articles (Carlisle ,

Wilson, Humphries, & Hadfield, 2005, Carlisle, 2009 and

Thompson, 2012) (the last version is from April 2015)

 FLOWGORITHM – created by Devin Cook (the last version 2.18.3 is

from November 2018).

The third one, Flowgorithm, was chosen mainly for three reasons. This was

students’ favourite code, it is still being developed and it was possible to create its

localization (translation). The main Flowgorithm features are as follows: easy to

understand output, graphical variable watch window, interactively generated code

(for 12+ languages), safe recursion, loops, arrays, and flexible expressions and

multilingual support. Moreover, there is an e-book created by Roberto Atzori with

more than 250 flowcharts.

To some extent ALVIS Live! (ALgorithm VIsualization Storyboarder) represents a

similar idea. It is the part of the VEUPL project (Visualization and End User

Programming Lab), whose leader was Chris Hundhausen. The program, of which

the last version is from September 2006, was described in many papers, e.g.

(Hundhausen & Douglas, 2002) and (Hundhausen & Brown, 2005). More

information about the flowchart-based programming environments for improving

comprehension and problem-solving skills of novice programmers can be found in

(Hooshyar et al., 2015). The use of a flowchart interpreter for the introductory

programming course was presented by Crews and Ziegler in Crews & Ziegler

(1998). Kuen (Kuen, 2011) described the learning programming concepts using

flowcharting software. A similar problem – an animated flowchart with an example

to teach the algorithm based courses in engineering was published by Dol (Dol,

2015).

Algorithms, Programming, Flowcharts and Flowgorithm 395

2 FUNDAMENTALS OF COMPUTER SCIENCE

Fundamentals of the course in Computer Science at the Faculty of Civil

Engineering at Warsaw University of Technology have been already described in

many publications like Gajewski , Wlasak, & Jaczewski (2013) and

Gajewski & Jaczewski (2014). Algorithms and programming are only a part of

the course consisting of three hours of lectures and six hours of classes. The

computer algebra system Mathcad Prime (Gajewski , 2014) is used for this course

with some elements of blended learning. A similar approach was presented by

Azemi in Azemi & Pauley (2008) and Asad Azemi, Bodek, & Chinn (2013).

Basic and introductory programming courses frequently cause problems.

Giannakos (Giannakos, Pappas, Jaccheri , & Sampson, 2016) tried to

understand student retention in computer science education. Rahmat discussed

(Rahmat et al., 2012) major problems in basic programming that influence

students’ performance. In another paper Zainal (Zainal et al., 2012) investigated

students’ perception and motivation towards programming. The answer to the

question how to reduce the dropout rate in an introductory programming course

(Yadin, 2011) is still open. More information about teaching and learning

programming can be found in the review papers written by Ala-Mutka (Ala-

Mutka, 2004) and Pears (Pears et al., 2007).

2.1 Basic Algorithmic Problems

During lectures three basic and classical algorithmic problems which do not require

deep mathematical knowledge are presented. Their excellent description can be

found also in Wikipedia.

Square root – Babylonian method. Algorithm is described precisely even in

Wikipedia: ―The basic idea is that if x is an overestimate to the square root of a

non-negative real number S then S/x will be an underestimate and so the average of

these two numbers may reasonably be expected to provide a better approximation‖

Root of the function – bisection method is described in Wikipedia as

follows. ―At each step the method divides the interval in two by computing the

midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that point.

Unless c is itself a root (which is very unlikely, but possible) there are now only

two possibilities: either f(a) and f(c) have opposite signs and bracket a root, or f(c)

and f(b) have opposite signs and bracket a root. The method selects the subinterval

that is guaranteed to be a bracket as the new interval to be used in the next step.‖

Greatest common divisor – Euclidean algorithm. According to Wikipedia

definition: ―The Euclidean algorithm is based on the principle that the greatest

common divisor of two numbers does not change if the larger number is replaced

by its difference with the smaller number. Since this replacement reduces the larger

of the two numbers, repeating this process gives successively smaller pairs of

numbers until the two numbers become equal. When that occurs, they are the GCD

R. Robert Gajewski 396

of the original two numbers.‖ All these algorithms are discussed during lectures

using Flowgorithm (see Fig. 1).

 a)

b)

Figure 1. Flowcharts of the Babylonian method (a)

and Euclidean algorithm (b)

Source: Own work

2.2 Branching

If a statement (branching) is for the first time introduced in a spreadsheet for

simple problems like a function given by distinct formulas for different ranges of

an argument. In the case of three intervals nested if is used (see Fig. 2).

   















1

1,11

1

xx

x

xx

xf =IF(A1<-1,-A1,IF(A1>1,A1,1))

Figure 2. Nested if in a spreadsheet

Source: Own work

Algorithms, Programming, Flowcharts and Flowgorithm 397

2.3 Looping

Loops are not available directly in a spreadsheet, but in the case of iterative

calculations they can be simulated by expanding formulas as for the case of a sum

of elements (see Fig. 3).

Figure 3. Sum of integers – flowchart and for loop in a spreadsheet

Source: Own work

While a loop is used for two cases of stopping condition for a sum of elements

imposed on the value of added elements or on the value of a sum (see Fig.4).

2.4 Sample exam problems

All exam problems belong to one of the two groups:

 for loop together with if branching (vectors and matrices and their

elements);

 while loop (sums of series, expansion to series)

Sample exam problems are as follows:

 Create function that calculates the average of matrix elements from the

range (a,b);

 Create function that expands to the Taylor series centred at zero

(Maclaurin series) cosine function; add only elements greater than eps.

The solution of these problems is very simple. Sample codes have only a few lines

(see Fig. 5). General structure of the code can be easily memorized but a solution

of each problem requires understanding of the algorithm. Flowgorithm helps to

understand how algorithms work especially enabling to follow calculations in an

automatic way

R. Robert Gajewski 398

Figure 4. Sum of series – two different conditions

Source: Own work

2.5 e-Learning materials and tools

All educational resources are available on the faculty Moodle platform with

materials like quizzes (self-assessment tests) and software animations. There are

two books about Mathcad Prime prepared especially for the course. There is also a

portal dedicated to Polish version of a book (prime.il.pw.edu.pl). In the

forthcoming academic year active software simulations will also be available. All

educational materials are very popular among Students but unfortunately mainly

just before the exams. Students are definitely reluctant to work in a systematic way.

3 SURVEYS AND THEIR RESULTS

In order to learn what students’ experiences are like in designing algorithms and

programming, difficulties with different teaching topics and favourite learning

resources two surveys were conducted.

Algorithms, Programming, Flowcharts and Flowgorithm 399

Figure 5. Solution of sample exam problems

Source: Own work

3.1 Surveys methodology

Surveys took place at the very end of semester in January 2017. Participation in the

surveys was not compulsory but students were asked to participate in them in order

to improve quality of the classes. Anonymous questionnaires were filled by 136

students out of 186 attending classes. The whole process was partly automatic –

Google Forms were used to collect the data. For all surveys Cronbach’s α

coefficients (Cronbach, 1951, Cronbach & Shavelson, 2004) as a lower

bound estimate of the reliability of psychometric test were calculated. This

coefficient should be at least 0.6.

3.2 First survey

The first survey was based on Konecki’s research described in (Konecki , 2014),

(Konecki , 2015) and (Konecki & Petrl ic , 2014). Likert scale was used for all

given questions (1-strongly disagree, 10-strongly agree). Results for questions

concerning experiences in designing algorithms and programming (Table 1) are

different than obtained by Konecki, whose research was conducted among 190

students of information science. This is mainly due to the facts that civil

engineering students do not like algorithms and programming. Cronbach’s α is for

this test 0.8301.

3.3 Second survey

The second survey was based on another questionnaire (Malik & Coldwell -

Neilson, 2016). In the first part of the second survey the five-point Likert scale is

used, from very difficult to learn (1) to very easy to learn (5). The answers to the

questions regarding difficulties with different teaching topics (Table 2) show that

repetition and selection as well as functions belong to the group of very difficult to

R. Robert Gajewski 400

learn topics. This was visible during practical tests. Choice of an appropriate loop

(for or while), was the biggest problem for students. Cronbach’s α is for this test

0.7927.

Table 1.

Reported experiences in designing algorithms and programming

Questionnaire Item Mean

I have no difficulties in understanding of programming problems that are

presented to me
4.000

When solving programming task, I have difficulties in understanding the task

itself
5.471

I have difficulties in drawing a diagram or writing a pseudocode of a given

programming task’s solution
5.434

I have more problems in visualizing and designing a conceptual solution in a

pseudocode than in understanding and remembering programming language

syntax

5.397

Designing of algorithmic solutions is difficult and not intuitive to me 5.610

The main problem I experience is remembering programming language syntax 5.169

The main problems I experience refer to understanding and visualizing

programming tasks and designing their algorithmic solutions
5.518

Source: Own work inspired by Konecki

Table 2.

Teaching topics

I found… Mean

Very

difficult

to learn

Difficult

to learn
Neutral

Easy to

learn

Very

easy to

learn

Arrays 3.345 11 13 48 43 21

Expressions 3.463 4 18 48 43 23

Functions 2.845 19 37 38 30 12

Operators 3.434 7 15 48 44 22

Parameters 3.338 3 23 49 47 14

Repetition 2.904 14 37 45 28 12

Selection 3.074 10 32 50 26 18

Variables 3.346 5 21 52 38 20

Source: Own work inspired by Malik & Coldwell -Neilson

Algorithms, Programming, Flowcharts and Flowgorithm 401

In the second part of the survey the five-point Likert scale is used. Questions

related to the learning situation use a scale of never (1) to always (5). The answers

to the questions regarding learning situations (Table 3) show, that lectures never or

rarely helped in learning programming. Students treat programming as something

practical, so they do prefer to learn programming during lab sessions. Cronbach’s α

is for this test 0.4866.

Also in the last part of the survey the five-point Likert scale is used. Questions

relating to the teaching materials use a scale of useless material (1) to very useful

material (5). The answers to the questions regarding teaching and learning

resources (Table 4) show, that students treat the introductory course book and

lecture notes as mainly useless, not very useful or somewhat useful. Software

animations (movies), exercise questions and answers and example programs are

treated as useful or very useful resources. Students rarely attend lectures and they

do prefer to watch in a passive way movies rather than actively read a book.

Cronbach’s α is for this test 0.6746.

Table 3.

Learning situations

I learned about programming… Mean Never Rarely
Someti

mes
Often Always

In lectures 1.889 64 37 24 8 3

In lab sessions 3.434 6 19 43 46 22

While studying alone 3.456 6 20 43 40 27

While working alone on

programming coursework
3.485 5 21 41 41 28

In exercise sessions in small

groups
2.397 42 31 38 17 8

Source: Own work inspired by Malik & Coldwell -Neilson

In the next phase of this research self-assessment of the course using Bloom’s

revisited taxonomy like in Alaoutinen & Smolander (2010) and investigation

of test reliability including Guttman’s lambda-2 (Guttman, 1945) are planned.

Moreover multiple choice tests will be used to evaluate student understanding

during computer programming classes (Kuechler & Simkin, 2003).

R. Robert Gajewski 402

Table 4.

Teaching and learning resources

I found the… Mean Useless

Not

very

useful

Somew

hat

useful

Useful
Very

useful

Introductory course book 2.449 38 36 35 17 10

Lecture notes 2.073 58 27 36 13 2

Exercise questions and

answers
4.058 3 8 23 46 56

Example programs 3.926 6 5 29 49 47

Still pictures of programming

structures
3,250 10 22 50 32 22

Interactive visualizations 3.324 15 15 44 35 27

Movies (software animations) 4,132 2 9 23 37 65

Source: Own work inspired by Malik & Coldwell -Neilson

CONCLUSION

This research was inspired by the Cognitive-Affective Theory of Learning with

Media (CATLM) created by Moreno and presented in Moreno (2005, 2006).

CATLM represents an expansion of the popular Cognitive Theory of Multimedia

Learning (CTML) reported by Mayer in his book ―Multimedia Learning‖ (Mayer,

2001) and later by Sorden in ―Handbook of Educational Theories‖ (Sorden,

2013). CATLM assumes that students need to become motivated to make full use

of their cognitive resources (Park, Plass, & Brünken, 2014). All tutors in the

presented course were specialists in Computational Thinking but perhaps students

had not enough motivation for learning which was the reason of problems and bad

results.

The question raised five years ago – ‖how to motivate digital natives to learn‖

(Wlasak, Jaczewski , Dubilis , & Warda, 2013) is still open. Students are

generally against programming. They are absolutely satisfied even by their poor

knowledge of IT limited to some basic editing skills. Results of 258 tests and

retakes in Mathcad clearly show it.

The examination consisted of twelve problems – ten devoted to calculations and

two to programming. The total score is fourteen points – ten from calculations and

four from programming. Results of these tests show that students try to avoid

Algorithms, Programming, Flowcharts and Flowgorithm 403

problems in programming and do prefer to gain points from simple calculation

problems.

According to OECD Report ―Students, Computers and Learning - Making the

Connection‖(OECD, 2015) students who use computers at school only moderately

score the highest in reading. Moreover, students who do not use computers in

maths classes score higher results in mathematics. Perhaps the same observation is

valid for algorithmics and programming. Overuse of technology can lead to worse

results.

Figure 6. Results of tests in Mathcad

Source: Own work

Flowgorithm proved to be a very effective lecture tool allowing to present

algorithms and their results. During laboratories Flowgorithm was used mainly

only when students were obliged to do this, which is the result of negative attitude

to programming. Flowgorithm enabled to distinguish between programming

(creating an algorithm) and coding (representing an algorithm in a particular

programming language) and concentrate on algorithms and programming. The next

question – how to assure digital natives that computational and algorithmic

thinking as well as programming skills are essential for all engineers is also open.

How to use in effective way algorithm animations for teaching and learning is still

an open research question (Fleischer & Kucera, 2002), (Végh & Stoffová,

2017). Another important research issue is Technology Acceptance Model (TAM)

(Adams, Nelson, & Todd, 1992) used to measure and evaluate perceived

usefulness, ease of use, and usage of information technology. TAM can be

exercised to measure continuance intention to use MOOCs (Wu & Chen, 2017)

and to measure users’ acceptance of e-Learning (Tarhini , Hone, Liu, &

Tarhini , 2017).

R. Robert Gajewski 404

Acknowledgments

The author would like to thank all students who participated in surveys and

filled two long questionnaires. Research was conducted within a frame of grant No.

504/03550/1088/40.

REFERENCES

Adams, D. A. , Nelson, R. R., & Todd, P. A. (1992). Perceived

Usefulness, Ease of Use, and Usage of Information Technology: A

Replication. MIS Q., 16(2), 227–247. https://doi.org/10.2307/249577

Ala-Mutka, K. (2004). Problems in Learning and Teaching Programming - a

literature study for developing visualizations in the Codewitz-Minerva project

(p. 13). Institute of Software Systems, Tampere University of Technology,

Finland. Retrieved from https://www.cs.tut.fi/~edge/literature_study.pdf

(accessed 27.11.2018)

Alaoutinen, S. , & Smolander , K. (2010). Student self-assessment in a

programming course using Bloom’s Revised Taxonomy. In Proceedings of the

2010 ACM SIGCSE Annual Conference on Innovation and Technology in

Computer Science Education (pp. 155–159).

https://doi.org/10.1145/1822090.1822135

Azemi, A., & Pauley , L. L. (2008). Teaching the introductory computer

programming course for engineers using Matlab. In Frontiers in Education

Conference, 2008. FIE 2008. 38th Annual (pp. T3B-1–T3B-23). IEEE.

https://doi.org/10.1109/FIE.2008.4720302

Azemi, Asad, Bodek, M., & Chinn , G. (2013). Teaching an introductory

programming course using hybrid e-learning approach. In Proceedings -

Frontiers in Education Conference, FIE (pp. 1911–1913).

https://doi.org/10.1109/FIE.2013.6685168

Baldwin, L. P., & Kuljis , J. (2001). Learning programming using program

visualization techniques. In Proceedings of the 34th Annual Hawaii

International Conference on System Sciences, 2001 (p. 8 pp.). USA: IEEE.

https://doi.org/10.1109/HICSS.2001.926232

Carlisle, M. C. (2009). Raptor: a visual programming environment for teaching

object-oriented programming. Journal of Computing Sciences in Colleges,

24(4), 275–281.

Carlisle, M. C. , Wilson, T. A. , Humphries, J . W., & Hadfield , S. M.

(2005). RAPTOR: a visual programming environment for teaching

algorithmic problem solving. ACM SIGCSE Bulletin, 37(1), 176–180.

Crews, T., & Ziegler , U. (1998). The flowchart interpreter for introductory

programming courses. In Frontiers in Education Conference, 1998. FIE ’98.

28th Annual (pp. 307–312). https://doi.org/10.1109/FIE.1998.736854

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.

Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

Algorithms, Programming, Flowcharts and Flowgorithm 405

Cronbach, L. J . , & Shavelson, R. J. (2004). My Current Thoughts on

Coefficient Alpha and Successor Procedures. Educational and Psychological

Measurement, 64(3), 391–418. https://doi.org/10.1177/0013164404266386

Diehl , S. (Ed.). (2002). Software Visualization (Vol. 2269). Springer Berlin

Heidelberg. Retrieved from http://link.springer.com/10.1007/3-540-45875-1

(accessed 27.11.2018)

Dol, S. M. (2015). Fe.g.: An Animated Flowchart with Example to Teach the

Algorithm Based Courses in Engineering. In 2015 IEEE Seventh International

Conference on Technology for Education (T4E) (pp. 49–52).

https://doi.org/10.1109/T4E.2015.3

Fleischer, R., & Kucera , L. (2002). Algorithm Animation for Teaching. In

Revised Lectures on Software Visualization, International Seminar (pp. 113–

128). London, UK, UK: Springer-Verlag. Retrieved from

http://dl.acm.org/citation.cfm?id=647382.724788

Gaddis, T. (2015). Starting Out with Programming Logic and Design (4 edition).

Boston: Pearson.

Gajewski , R. R. (2014). Engineering Calculations and Their Programming:

PTC® MathCAD Prime® 3.0. Warsaw: Oficyna Wydawnicza Politechniki

Warszawskiej.

Gajewski, R. R. , & Jaczewski , M. (2014). Flipped Computer Science

Classes. In Federated Conference on Computer Science and Information

System (pp. 795–802). Warsaw.

Gajewski, R., Wlasak, L., & Jaczewski , M. (2013). IS (ICT) and CS in

Civil Engineering Curricula: Case Study. In Proceedings of the 2013

Federated Conference on Computer Science and Information Systems (pp.

717–720). Krakow: IEEE.

Giannakos, M. N. , Pappas, I. O., Jaccheri , L., & Sampson , D. G.

(2016). Understanding student retention in computer science education: The

role of environment, gains, barriers and usefulness. Education and Information

Technologies. https://doi.org/10.1007/s10639-016-9538-1

Goktepe, M. (1988). Design and Implementation of a Tool for Teaching

Programming (M.Sc. Thesis). Bilkent University, Ankara.

Gomes, A. , & Mendes , A. J. (2007). Learning to program-difficulties and

solutions. In International Conference on Engineering Education–ICEE (Vol.

2007).

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika,

10(4), 255–282. https://doi.org/10.1007/BF02288892

Hooshyar, D., Ahmad, R. B., Nasir , M. H. N. M., Shamshirband, S.,

& Horng, S. -J . (2015). Flowchart-based programming environments for

improving comprehension and problem-solving skill of novice programmers:

a survey. International Journal of Advanced Intelligence Paradigms, 7(1), 24–

56. https://doi.org/10.1504/IJAIP.2015.070343

Hundhausen, C. D., & Brown, J . L. (2005). What You See Is What You

Code: A radically dynamic algorithm visualization development model for

R. Robert Gajewski 406

novice learners. In 2005 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC’05) (pp. 163–170). IEEE.

Hundhausen, C. D. , & Douglas, S. A . (2002). Low-fidelity algorithm

visualization. Journal of Visual Languages & Computing, 13(5), 449–470.

Konecki , M. (2014). Problems in Programming Education and Means in Their

Improvement. In DAAAM International Scientific Book 2014 (pp. 459–470).

Konecki , M. (2015). Algorithmic thinking as a prerequisite of improvements in

introductory programming courses. Uporabna Informatika, 23(3), 162–169.

Konecki, M., & Petrl ic , M. (2014). Main problems of programming novices

and the right course of action. In Central European Conference on Information

and Intelligent Systems (pp. 116–123). Varazdin: Faculty of Organization and

Informatics Varazdin.

Kuechler, W. L., & Simkin , M. G. (2003). How Well Do Multiple Choice

Tests Evaluate Student Understanding in Computer Programming Classes?

Journal of Information Systems Education, 14(4), 389–399.

Kuen, K. C. (2011). Learning Programming Concepts Using Flowcharting

Software. In Proceedings of the Global Chinese Conference on Computers in

Education (GCCCE) 2011. Hangzhou, China.

Malik, S. I. , & Coldwell -Neilson, J. (2016). A model for teaching an

introductory programming course using ADRI. Education and Information

Technologies, 1–32. https://doi.org/10.1007/s10639-016-9474-0

Mayer, R. E. (2001). Multimedia Learning. New York: Cambridge University

Press.

Moreno, R. (2005). Instructional Technology: Promise and Pitfalls. In

Technology-Based Education: Bringing Researchers and Practitioners

Together (pp. 1–19). Information Age Publishing.

Moreno, R. (2006). Does the modality principle hold for different media? A test

of the method-affects-learning hypothesis. Journal of Computer Assisted

Learning, 22(3), 149–158. https://doi.org/10.1111/j.1365-2729.2006.00170.x

Nickerson, J. V. (1994). Visual Programming (Ph.D. Dissertation). New York

University, Computer Science, New York. Retrieved from

https://web.stevens.edu/jnickerson/indextopic.htm.

OECD. (2015). Students, Computers and Learning. Making the connection. (p.

204). Retrieved from /content/book/9789264239555-en

Park, B., Plass, J . L., & Brünken , R. (2014). Cognitive and affective

processes in multimedia learning. Learning and Instruction, 29, 125–127.

https://doi.org/10.1016/j.learninstruc.2013.05.005

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,

Bennedsen, J . , Devlin, M., Paterson, J., (2007). A survey of literature

on the teaching of introductory programming. ACM SIGCSE Bulletin, 39(4),

204–223.

Rahmat, M., Shahrani, S., Latih, R. , Yatim, N. F. M., Zainal, N. F.

A., & Rahman, R. A. (2012). Major Problems in Basic Programming that

Algorithms, Programming, Flowcharts and Flowgorithm 407

Influence Student Performance. Procedia - Social and Behavioral Sciences,

59, 287–296. https://doi.org/10.1016/j.sbspro.2012.09.277

Robins, A., Rountree, J . , & Rountree , N. (2003). Learning and Teaching

Programming: A Review and Discussion. Computer Science Education, 13(2),

137–172.

Shneiderman, B., Mayer, R., McKay, D., & Heller , P. (1977).

Experimental investigations of the utility of detailed flowcharts in

programming. Communications of the ACM, 20(6), 373–381.

Sleeman, D. (1986). The Challenges of Teaching Computer Programming.

Commun. ACM, 29(9), 840–841. https://doi.org/10.1145/6592.214913

Sorden, S. D. (2013). The Cognitive Theory of Multimedia Learning. In

Handbook of Educational Theories. Information Age Publishing.

Tarhini , A., Hone, K., Liu, X. , & Tarhini , T. (2017). Examining the

moderating effect of individual-level cultural values on users’ acceptance of

E-learning in developing countries: a structural equation modeling of an

extended technology acceptance model. Interactive Learning Environments,

25(3), 306–328. https://doi.org/10.1080/10494820.2015.1122635

Thompson, M. (2012). Evaluating the Use of Flowchart-based RAPTOR

Programming in CS0. In Proceedings of the 45th Annual Midwest Instruction

and Computing Symposium. Cedar Falls, Iowa: University of Northern Iowa.

Retrieved from http://micsymposium.org/mics2012/submissions/mics2012_

submis sion_38.pdf

Végh, L., & Stoffová , V. (2017). Algorithm Animations for Teaching and

Learning the Main Ideas of Basic Sorting. Informatics in Education, 16(1),

121–140.

Venit , S., & Drake, E. (2014). Prelude to Programming (6th ed.). Boston:

Pearson.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM,

49(3), 33–35.

Wlasak, L., Jaczewski, M., Dubilis, T., & Warda , T. (2013). How to

Motivate Digital Natives to Learn? In WCCE 2013 10th IFIP World

Conference on Computers in Education (Vol. 3: Book of Abstracts, pp. 78–

79). Torun: IFIP.

Wolfram, S. (2016). How to Teach Computational Thinking—Stephen Wolfram

Blog. Retrieved from http://blog.stephenwolfram.com/2016/09/how-to-teach-

computational-thinking/ (accessed 30 November 2016)

Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating

the technology acceptance model (TAM) and task technology fit (TTF) model.

Computers in Human Behavior, 67, 221–232. https://doi.org/10.1016/

j.chb.2016.10.028

Yadin, A. (2011). Reducing the dropout rate in an introductory programming

course. ACM Inroads, 2(4), 71. https://doi.org/10.1145/2038876.2038894

Zainal, N. F. A., Shahrani, S., Yatim, N. F. M., Rahman, R. A.,

Rahmat, M., & Latih, R. (2012). Students’ Perception and Motivation

R. Robert Gajewski408

Towards Programming. Procedia - Social and Behavioral Sciences, 59, 277–

286. https://doi.org/10.1016/j.sbspro.2012.09.276

